# 问题1、
ModuleNotFoundError: No module named ‘sklearn.cross_validation’
这个错是导入
from sklearn.cross_validation import train_test_split
报的错。主要是因为这个模块有更改,将这一句改为下面即可:
from sklearn.model_selection import train_test_split
问题2、
ModuleNotFoundError: No module named ‘sklearn.grid_search’
这个是由于导入
from sklearn.grid_search import GridSearchCV
报的错,需要将此句改为:
from sklearn.model_selection import GridSearchCV
问题3、
ImportError: cannot import name ‘RandomizedPCA’
需要将此句改为下面这句即可:
from sklearn.decomposition import PCA as RandomizedPCA
问题4、
ValueError: min_faces_per_person=70 is too restrictive
这个是因为有数据没有下载完整而报的错误,下载到的目录(我的是window系统,在)下载好复制到这个目录就行,必须先将lfw_home目录下所有内容删除,再运行即可。
C:\Users\自己的用户名字\scikit_learn_data\lfw_home
可以手动下载下面这几个,将不完整的删除。
https://ndownloader.figshare.com/files/5976018 #lfw.tgz
https://ndownloader.figshare.com/files/5976015 #lfw-funneled.tgz
https://ndownloader.figshare.com/files/5976012 #pairsDevTrain.txt
https://ndownloader.figshare.com/files/5976009 #pairsDevTest.txt
https://ndownloader.figshare.com/files/5976006 #pairs.txt
问题5、
ValueError: class_weight must be dict, ‘balanced’, or None, got: ‘auto’
定位到是这一句:
clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)
意思是需要的需要是个字典,字典必须是 ‘balanced’, or None,却得到了‘auto’,所以需要改为:
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
或者
clf = GridSearchCV(SVC(kernel='rbf', class_weight=None), param_grid)
到此结束了。
问题6、
FutureWarning: You should specify a value for ‘cv’ instead of relying on the default value. The default value will change from 3 to 5 in version 0.22.
warnings.warn(CV_WARNING, FutureWarning)
能够运行,但是却有这个警告,The default value will change from 3 to 5 in version 0.22.这个意思默认cv改为3至5,经过测试,cv为3,4,5都可以。
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
这一句,加个参数即可,
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid,cv=4)
下面是默认的cv=’warn’.
{% image /imgs/20190409101355250.png '在这里插入图片描述' '' %}完整代码:
from __future__ import print_function
from time import time
import logging
import matplotlib.pyplot as plt
# from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_lfw_people
# from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
# from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition import PCA as RandomizedPCA
from sklearn.svm import SVC
print(__doc__)
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
###############################################################################
# Download the data, if not already on disk and load it as numpy arrays
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape
# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]
# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)
###############################################################################
# Split into a training set and a test set using a stratified k fold
# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25)
###############################################################################
# Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
# dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150
print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))
t0 = time()
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))
eigenfaces = pca.components_.reshape((n_components, h, w))
print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))
###############################################################################
# Train a SVM classification model
print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
# clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = GridSearchCV(SVC(kernel='rbf', class_weight=None), param_grid)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)
###############################################################################
# Quantitative evaluation of the model quality on the test set
print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))
print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
###############################################################################
# Qualitative evaluation of the predictions using matplotlib
def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):
plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())
# plot the result of the prediction on a portion of the test set
def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return r'predicted: %s\ntrue: %s' % (pred_name, true_name)
prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]
plot_gallery(X_test, prediction_titles, h, w)
# plot the gallery of the most significative eigenfaces
eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)
plt.show()